Enrollment No: ____

Exam Seat No:_____

C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Mathematics - II

Subject Code: 4SC02MTC1		Branch: B.Sc. (All)		
Semester: 2	Date: 09/05/2017	Time:02:00 To 05:00	Marks: 70	
Instructions: (1) Use of Pro	ogrammable calculator & a	ny other electronic instrumen	t is prohibited.	

- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Solve: $(D^2 - 1)y = 0$

b)

Q-1 Attempt the following questions:

a) Find out order and degree of the differential equation

$$1 + \left(\frac{dy}{dx}\right)^2 = \left(\frac{d^3y}{dx^3}\right)^2$$

(02)

(01)

(01)

(01)

(14)

(02)

- c) Evaluate: $\int_0^{\frac{\pi}{2}} \sin^3 x \cos^4 x \, dx \tag{02}$
- **d**) Find polar form of $1 + \sqrt{3}i$. (01)
- e) Find real and imaginary part of $2e^{-\frac{i\pi}{2}}$ (01)
- **f**) $\lim_{n \to \infty} \sqrt[n]{a} =$ _____ where a > 0.
- g) True/ False. If P.I. = 0 then the general solution of ordinary differential equation (01) is same as the complementary function.
 h) Define: Cauchy's sequence. (01)
- i) True/ False. Every convergent sequence is bounded.
- **j**) Write equation of ellipsoid.
- **k**) True/ False. If the imaginary part of any complex number is zero then the (01) complex number becomes purely real number.

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all questions	(14)
	a)	State and prove De-moivre's theorem	(07)
	b)	Prove that $(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1} \cos \frac{n\pi}{4}$	(05)
	c)	Simplify: $\frac{(\cos 4\theta - i \sin 4\theta)^4 (\cos 2\theta + i \sin 2\theta)^{-6}}{(\cos 2\theta + i \sin 2\theta)^{-6}}$	(02)
		$(\cos 2\theta - i \sin 2\theta)^3 (\cos \theta - i \sin \theta)^{-7}$	

Q-3		Attempt all questions	(14)
	a)	Prove that $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$.	(05)
	b)	Find the roots of the equation $z^4 - 1 = 0$.	(05)
Q-4	c)	Solve: $(D^2 + 2D - 3)y = e^x$. Attempt all questions	(04) (14)
	a) b)	Using De-moivre's theorem solve $x^7 + x^4 + i(x^3 + 1) = 0$	(07)
	D)	Solve: $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = x^2 \sin(\log x)$.	(07)
Q-5		Attempt all questions $\sqrt{2}$	(14)
	a)	Prove that $\cosh^{-1}(z) = \log(2z + \sqrt{z^2} - 1)$.	(00)
	b)	Find real and imaginary part of i^i .	(05)
	c)	Show that $\sin h(ix) = isinx$.	(03)
Q-6		Attempt all questions	(14)
	a)	Prove that $I_n = \int \cos^n x dx = \frac{\sin x \cos^{n-1} x}{n} + \frac{n-1}{n} I_{n-2}.$	(06)
	b)	Evaluate: $\int_0^1 x^6 \sqrt{1 - x^2} dx.$	(04)
	c)	Solve: $\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 4y = \cos x.$	(04)
Q-7		Attempt all questions	(14)
	a)	If $f(D)y = e^{ax}$ is given linear differential equation with constant co – efficient then prove that $\frac{1}{f(D)}e^{ax} = \frac{1}{f(a)}e^{ax}$, if $f(a) \neq 0$.	(06)
	b)	Show that the equation $2y^2 - 8yz - 4zx - 8xy + 6x - 4y - 2z + 5 = 0$ represents a cone whose vertex is $\left(-\frac{7}{6}, \frac{1}{3}, \frac{5}{6}\right)$.	(06)
	c)	Check whether the sequence $\left\{\frac{1}{n}\right\}$ convergent or not.	(02)
Q-8		Attempt all questions	(14)
	a)	Find equation of lines in which the plane $x + 3y - 2$ cuts the cone $x^2 + 9y^2 - 4z^2 = 0.$	(06)
	b)	Find equation of cylinder whose generator are parallel to $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and guiding curve $x^2 + y^2 = 16$, $z = 0$.	(06)
	c)	Evaluate: $\frac{1}{D^2}(x^4)$.	(02)

